Numerical approximation of fractional powers of elliptic operators

نویسندگان

  • Andrea Bonito
  • Joseph E. Pasciak
چکیده

We present and study a novel numerical algorithm to approximate the action of T := L where L is a symmetric and positive definite unbounded operator on a Hilbert space H0. The numerical method is based on a representation formula for T in terms of Bochner integrals involving (I + tL) for t ∈ (0,∞). To develop an approximation to T , we introduce a finite element approximation Lh to L and base our approximation to T β on T h := L h . The direct evaluation of T h is extremely expensive as it involves expansion in the basis of eigenfunctions for Lh. The above mentioned representation formula holds for T −β h and we propose three quadrature approximations denoted generically by Q β h . The two results of this paper bound the errors in the H0 inner product of T −T h πh and T β h −Q β h where πh is the H0 orthogonal projection into the finite element space. We note that the evaluation of Q h involves application of (I+(ti) 2Lh) −1 with ti being either a quadrature point or its inverse. Efficient solution algorithms for these problems are available and the problems at different quadrature points can be straightforwardly solved in parallel. Numerical experiments illustrating the theoretical estimates are provided for both the quadrature error T h −Q β h and the finite element error T − T h πh.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FEM for an Optimal Control Problem of Fractional Powers of Elliptic Operators

We study solution techniques for a linear-quadratic optimal control problem involving fractional powers of elliptic operators. These fractional operators can be realized as the Dirichlet-toNeumann map for a nonuniformly elliptic problem. Thus, we consider an equivalent formulation with a nonuniformly elliptic operator as state equation. The rapid decay of the solution to this problem suggests a...

متن کامل

A splitting scheme to solve an equation for fractional powers of elliptic operators

An equation containing a fractional power of an elliptic operator of second order is studied for Dirichlet boundary conditions. Finite difference approximations in space are employed. The proposed numerical algorithm is based on solving an auxiliary Cauchy problem for a pseudo-parabolic equation. Unconditionally stable vector additive schemes (splitting schemes) are constructed. Numerical resul...

متن کامل

Numerical Approximation of Fractional Powers of Regularly Accretive Operators

We study the numerical approximation of fractional powers of accretive operators in this paper. Namely, if A is the accretive operator associated with an accretive sesquilinear form A(·, ·) defined on a Hilbert space V contained in L(Ω), we approximate A for β ∈ (0, 1). The fractional powers are defined in terms of the so-called Balakrishnan integral formula. Given a finite element approximatio...

متن کامل

The approximation of parabolic equations involving fractional powers of elliptic operators

We study the numerical approximation of a time dependent equation involving fractional powers of an elliptic operator L defined to be the unbounded operator associated with a Hermitian, coercive and bounded sesquilinear form on H 0 (Ω). The time dependent solution u(x, t) is represented as a Dunford Taylor integral along a contour in the complex plane. The contour integrals are approximated usi...

متن کامل

Positive approximations of the inverse of fractional powers of SPD M-matrices

This study is motivated by the recent development in the fractional calculus and its applications. During last few years, several different techniques are proposed to localize the nonlocal fractional diffusion operator. They are based on transformation of the original problem to a local elliptic or pseudoparabolic problem, or to an integral representation of the solution, thus increasing the di...

متن کامل

Multilevel Methods for Nonuniformly Elliptic Operators

We develop and analyze multilevel methods for nonuniformly elliptic operators whose ellipticity holds in a weighted Sobolev space with an A2–Muckenhoupt weight. Using the so-called Xu–Zikatanov (XZ) identity, we derive a nearly uniform convergence result, under the assumption that the underlying mesh is quasi-uniform. We also consider the so-called α-harmonic extension to localize fractional po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015